Power Hack – BigQuery for Google Ads

This is a GitHub Repo of my favourite BigQuery queries for the native backfill with Google Ads.

This project is designed to assist users in writing and executing SQL queries for Google BigQuery using TypeScript to help ChatGPT tweak your queries. You can easily create and modify queries for your Google Ads data, focusing on customization and flexibility.

Getting Started

Prerequisites

Set up Google BigQuery Data Transfer Service

Before running any queries, you’ll need to set up the transfer of data from Google Ads to BigQuery. Follow the guide provided by Google to configure the transfer:

Set up Google Ads Data Transfer

Google Cloud Project

Please make sure you have a Google Cloud project with BigQuery enabled. You’ll need the project ID and dataset ID where the Google Ads data is stored.

Example Query

Below is an example query in TypeScript that retrieves Google Ads performance data. You can customize it by replacing the variables to suit your needs.

You can use the following prompt to ask ChatGPT (or another AI-based code assistant) to help replace the variables:

Please replace the variables as follows:

  • projectId: Your Google Cloud project ID
  • accountIdNumber: Your Google Ads account ID
  • daysStart: Start date for the data range (format: YYYY-MM-DD)
  • daysEnd: End date for the data range (format: YYYY-MM-DD)

Here is a Query TypeScript function generator for BigQuery:

export const queryAccount = function (projectId: string, accountIdNumber: number, daysStart: string, daysEnd: string) {
    return `SELECT
                        round(SUM(c.Conversions), 2) AS Conversions,
                        round((SUM(c.Cost) / 1000000), 2) AS Cost,
                        (CASE WHEN sum(c.Conversions) > 1 THEN round(((SUM(c.Cost)) / SUM(c.Conversions)),2) ELSE 0 END)AS CPA
                    FROM
                        \`${projectId}.${accountIdNumber}.p_CampaignBasicStats_${accountIdNumber}\` c
                    WHERE c._PARTITIONDATE BETWEEN '${daysStart}' AND '${daysEnd}'
                    ORDER BY
                        Conversions DESC`;
};

Once the variables are replaced, return the SQL query that can be executed in BigQuery. It should look something like this:

SELECT
     round(SUM(c.Conversions), 2) AS Conversions,
     round((SUM(c.Cost) / 1000000), 2) AS Cost,
     (CASE WHEN sum(c.Conversions) > 1 THEN round(((SUM(c.Cost)) / SUM(c.Conversions)), 2) ELSE 0 END) AS CPA
FROM
     `my-google-cloud-project.111-1111-1111.p_CampaignBasicStats_111-1111-1111` c
WHERE 
     c._PARTITIONDATE BETWEEN '2024-09-01' AND '2024-10-01'
ORDER BY
     Conversions DESC;

Running the Query in BigQuery

After customizing the query with your variables, take the resulting SQL and paste it into the BigQuery interface to run it:

  1. Go to Google BigQuery
  2. Paste your query into the Query Editor.
  3. Click Run.

Contributing

Feel free to contribute by creating pull requests, opening issues, or suggesting features.

This version includes everything in a single README file, ready to add to your GitHub project.

Visualizing Data in Looker Studio

Once your query is executed and you have the desired data in BigQuery, you can visualize it in Looker Studio (formerly Google Data Studio). Follow the steps below to create a report and visualize the query results:

Step 1: Connect Looker Studio to BigQuery

  1. Go to Looker Studio.
  2. Click on CreateData Source.
  3. Select BigQuery from the list of available connectors.
  4. Choose Custom Query instead of selecting an existing table.
  5. Paste your SQL query here.

Note: Replace your daysStart and daysEnd variables in the query with the following dynamic date range parameters to allow Looker Studio to filter data based on the report’s date range:


SELECT
     round(SUM(c.Conversions), 2) AS Conversions,
     round((SUM(c.Cost) / 1000000), 2) AS Cost,
     (CASE WHEN sum(c.Conversions) > 1 THEN round(((SUM(c.Cost)) / SUM(c.Conversions)), 2) ELSE 0 END) AS CPA,
     FORMAT_DATE('%Y-%m-%d', PARSE_DATE('%Y-%m-%d', @DS_START_DATE)) AS Start_Date,
     FORMAT_DATE('%Y-%m-%d', PARSE_DATE('%Y-%m-%d', @DS_END_DATE)) AS End_Date
 FROM
     `${projectId}.${accountIdNumber}.p_CampaignBasicStats_${accountIdNumber}` c
 WHERE c._PARTITIONDATE BETWEEN PARSE_DATE('%Y-%m-%d', @DS_START_DATE) AND PARSE_DATE('%Y-%m-%d', @DS_END_DATE)
 ORDER BY Conversions DESC;

Now, you can access the data in real-time via Looker by interacting with the Date Range selector in the interface.

Hire PPC Specialists: backed by data

Clicktrain Logo
Tailored Solutions
Looking for an Enterprise PPC solution for large agencies or an in-house team?
Menu
Login
Join As Talent
Hire PPC Talent
Blog
PPC Resource Monitoring
About Us
Info
ClickTrain Marketing Platform LTD
Address: 265 269 Wimbledon
Park Rd, SW19 6NW, London
Compliance
Platform Terms and Conditions
Website Terms
Privacy Policy
Quick Links
PPC Freelancers
PPC Specialists
PPC Consultants
Google Ads Specialists
White Label Management
Copyright© ClickTrain, 2024. All rights reserved